Question 740508
<pre>
S<sub>4</sub>= -3.5, S<sub>5</sub>= -3.75, S<sub>6</sub>= -3.875.

The sum of the first 5 terms S<sub>5</sub> minus the sum
of the first 4 terms S<sub>4</sub> is the fifth term a<sub>5</sub>.  
That is:

-3.75 = S<sub>5</sub> = a<sub>1</sub>+a<sub>2</sub>+a<sub>3</sub>+a<sub>4</sub>+a<sub>5</sub>
-3.5  = S<sub>4</sub> = a<sub>1</sub>+a<sub>2</sub>+a<sub>3</sub>+a<sub>4</sub> 
-----------------------------------

Subtract those equations term by term

-3.75 - (-3.5) = a<sub>5</sub>  
   -3.75 + 3.5 = a<sub>5</sub>
         -0.25 = a<sub>5</sub>

------------------------------------
Similarly, the sum of the first 6 terms S<sub>6</sub> 
minus the sum of the first 5 terms S<sub>5</sub> is the 
sixth term a<sub>6</sub>. That is:

-3.875 = S<sub>6</sub> = a<sub>1</sub>+a<sub>2</sub>+a<sub>3</sub>+a<sub>4</sub>+a<sub>5</sub>+a<sub>6</sub>
-3.75  = S<sub>5</sub> = a<sub>1</sub>+a<sub>2</sub>+a<sub>3</sub>+a<sub>4</sub>+a<sub>5</sub> 
-----------------------------------

Subtract those equations term by term

-3.875 - (-3.75) = a<sub>6</sub>  
   -3.875 + 3.75 = a<sub>6</sub>
          -0.125 = a<sub>6</sub>

------------------------------------
So we have found two consecutive terms of the geometric series.

a<sub>5</sub> = -0.25
a<sub>6</sub> = -0.125

We can find the common ratio by dividing ANY term by the preceding 
term, so we can find the common ratio r by dividing the 6th term
by the 5th term:

r = {{{(-0.125)/(-0.25)}}} = 0.5 
 
Edwin</pre>