Question 738916


Looking at the expression {{{4n^2-28n+49}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-28}}}, and the last term is {{{49}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{49}}} to get {{{(4)(49)=196}}}.



Now the question is: what two whole numbers multiply to {{{196}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-28}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{196}}} (the previous product).



Factors of {{{196}}}:

1,2,4,7,14,28,49,98,196

-1,-2,-4,-7,-14,-28,-49,-98,-196



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{196}}}.

1*196 = 196
2*98 = 196
4*49 = 196
7*28 = 196
14*14 = 196
(-1)*(-196) = 196
(-2)*(-98) = 196
(-4)*(-49) = 196
(-7)*(-28) = 196
(-14)*(-14) = 196


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-28}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>196</font></td><td  align="center"><font color=black>1+196=197</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>98</font></td><td  align="center"><font color=black>2+98=100</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>49</font></td><td  align="center"><font color=black>4+49=53</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>7+28=35</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>14+14=28</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-196</font></td><td  align="center"><font color=black>-1+(-196)=-197</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-98</font></td><td  align="center"><font color=black>-2+(-98)=-100</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-49</font></td><td  align="center"><font color=black>-4+(-49)=-53</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-7+(-28)=-35</font></td></tr><tr><td  align="center"><font color=red>-14</font></td><td  align="center"><font color=red>-14</font></td><td  align="center"><font color=red>-14+(-14)=-28</font></td></tr></table>



From the table, we can see that the two numbers {{{-14}}} and {{{-14}}} add to {{{-28}}} (the middle coefficient).



So the two numbers {{{-14}}} and {{{-14}}} both multiply to {{{196}}} <font size=4><b>and</b></font> add to {{{-28}}}



Now replace the middle term {{{-28n}}} with {{{-14n-14n}}}. Remember, {{{-14}}} and {{{-14}}} add to {{{-28}}}. So this shows us that {{{-14n-14n=-28n}}}.



{{{4n^2+highlight(-14n-14n)+49}}} Replace the second term {{{-28n}}} with {{{-14n-14n}}}.



{{{(4n^2-14n)+(-14n+49)}}} Group the terms into two pairs.



{{{2n(2n-7)+(-14n+49)}}} Factor out the GCF {{{2n}}} from the first group.



{{{2n(2n-7)-7(2n-7)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2n-7)(2n-7)}}} Combine like terms. Or factor out the common term {{{2n-7}}}



{{{(2n-7)^2}}} Condense the terms.



===============================================================



Answer:



So {{{4n^2-28n+49}}} factors to {{{(2n-7)^2}}}.



In other words, {{{4n^2-28n+49=(2n-7)^2}}}.



Note: you can check the answer by expanding {{{(2n-7)^2}}} to get {{{4n^2-28n+49}}} or by graphing the original expression and the answer (the two graphs should be identical).