Question 730965
Remember that log(base n) (x) + log(base n) (y) = log(base n) (xy)<P>
LogBase4(x-2)+LogBase4(x+10)=3<P>
logbase((x-2)*(x+10)) = 3<P>
logbase4(x^2 + 8x -20) = 3<P>
Recall that logbasen (x) = y  if and only if n^y = x. <P>
{{{x^2 + 8x - 20 = 4^3 = 64}}}<P>
{{{x^2 + 8x - 84 = 0}}}
(x+14)(x-6) = 0<P>
x=-14 and x=6<P>
The log of a negative number is imaginary.  So only x=6 works.  -14 results in logbase4 (-16) + logbase4 (-4) = 3 .  The log of negative numbers isn't real.
<P>Hope the solution helped.  Sometimes you need more than a solution.  Contact fcabanski@hotmail.com for online, private tutoring, or personalized problem solving (quick for groups of problems.)