Question 729202


Looking at the expression {{{4a^2+7ab-2b^2}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{7}}}, and the last coefficient is {{{-2}}}.



Now multiply the first coefficient {{{4}}} by the last coefficient {{{-2}}} to get {{{(4)(-2)=-8}}}.



Now the question is: what two whole numbers multiply to {{{-8}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{7}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-8}}} (the previous product).



Factors of {{{-8}}}:

1,2,4,8

-1,-2,-4,-8



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-8}}}.

1*(-8) = -8
2*(-4) = -8
(-1)*(8) = -8
(-2)*(4) = -8


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{7}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>1+(-8)=-7</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>2+(-4)=-2</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>8</font></td><td  align="center"><font color=red>-1+8=7</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-2+4=2</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{8}}} add to {{{7}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{8}}} both multiply to {{{-8}}} <font size=4><b>and</b></font> add to {{{7}}}



Now replace the middle term {{{7ab}}} with {{{-ab+8ab}}}. Remember, {{{-1}}} and {{{8}}} add to {{{7}}}. So this shows us that {{{-ab+8ab=7ab}}}.



{{{4a^2+highlight(-ab+8ab)-2b^2}}} Replace the second term {{{7ab}}} with {{{-ab+8ab}}}.



{{{(4a^2-ab)+(8ab-2b^2)}}} Group the terms into two pairs.



{{{a(4a-b)+(8ab-2b^2)}}} Factor out the GCF {{{a}}} from the first group.



{{{a(4a-b)+2b(4a-b)}}} Factor out {{{2b}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(a+2b)(4a-b)}}} Combine like terms. Or factor out the common term {{{4a-b}}}



===============================================================



Answer:



So {{{4a^2+7ab-2b^2}}} factors to {{{(a+2b)(4a-b)}}}.



In other words, {{{4a^2+7ab-2b^2=(a+2b)(4a-b)}}}.



Note: you can check the answer by expanding {{{(a+2b)(4a-b)}}} to get {{{4a^2+7ab-2b^2}}} or by graphing the original expression and the answer (the two graphs should be identical).