Question 725822


Looking at the expression {{{3x^2+8x-3}}}, we can see that the first coefficient is {{{3}}}, the second coefficient is {{{8}}}, and the last term is {{{-3}}}.



Now multiply the first coefficient {{{3}}} by the last term {{{-3}}} to get {{{(3)(-3)=-9}}}.



Now the question is: what two whole numbers multiply to {{{-9}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{8}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-9}}} (the previous product).



Factors of {{{-9}}}:

1,3,9

-1,-3,-9



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-9}}}.

1*(-9) = -9
3*(-3) = -9
(-1)*(9) = -9
(-3)*(3) = -9


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{8}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>1+(-9)=-8</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>3+(-3)=0</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>9</font></td><td  align="center"><font color=red>-1+9=8</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-3+3=0</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{9}}} add to {{{8}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{9}}} both multiply to {{{-9}}} <font size=4><b>and</b></font> add to {{{8}}}



Now replace the middle term {{{8x}}} with {{{-x+9x}}}. Remember, {{{-1}}} and {{{9}}} add to {{{8}}}. So this shows us that {{{-x+9x=8x}}}.



{{{3x^2+highlight(-x+9x)-3}}} Replace the second term {{{8x}}} with {{{-x+9x}}}.



{{{(3x^2-x)+(9x-3)}}} Group the terms into two pairs.



{{{x(3x-1)+(9x-3)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(3x-1)+3(3x-1)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+3)(3x-1)}}} Combine like terms. Or factor out the common term {{{3x-1}}}



===============================================================



Answer:



So {{{3x^2+8x-3}}} factors to {{{(x+3)(3x-1)}}}.



In other words, {{{3x^2+8x-3=(x+3)(3x-1)}}}.



Note: you can check the answer by expanding {{{(x+3)(3x-1)}}} to get {{{3x^2+8x-3}}} or by graphing the original expression and the answer (the two graphs should be identical).