Question 63567
{{{(64y^3 + 27z^3) / (4y + 3z)}}}
{{{((4y)^3 + (3z)^3) / (4y + 3z)}}}
a = 4y
b = 3z
The equation is now in the form
{{{(a^3 + b^3) / (a + b)}}}
If you do the long division, this equals
{{{a^2 -ab + b^2}}} or
{{{(4y)^2 - (4y)*(3z) + (3z)^2}}}
{{{16y^2 - 12yz + 9z^2}}} answer
You can check this by doing
{{{(16y^2 - 12yz + 9z^2)}}}*{{{(4y + 3z)}}}
and seeing if it equals {{{64y^3 + 27z^3}}}