Question 721973
Find the center, vertices, and foci of the hyperbola and put the equation in standard form 
(x^2)-(9y^2)+2x-54y-107=0
***
complete the square:
(x^2)-(9y^2)+2x-54y-107=0
(x^2)+2x-(9y^2)-54y-107=0
(x^2+2x+1)-9(y^2+6y+9)=107+1+-81
(x+1)^2-9(y+3)^2=27
{{{(x+1)^2/27-(y+3)^2/3=1}}}
This is an equation of a hyperbola with horizontal transverse axis.
Its standard form: {{{(x-h)^2/a^2-(y-k)^2/b^2=1}}}, (h,k)=(x,y) coordinates of the center
For given hyperbola:
center: (-1,-3)
a^2=27
a=√27≈5.2
vertices: (-1±a,-3)=(-1±5.2,-3)=(-6.2,-3) and (4.2,-3)
..
c^2=a^2+b^2=27+3=30
c=√30≈5.5
foci:(-1±c,-3)=(-1±5.5,-3)=(-6.5,-3) and (4.5,-3)