Question 721664


(x,y)=(-3,-5), (-2,-8), (6,-248) plug in values for {{{x}}} and {{{y=f(x)}}} and find out what equation will be true

Possibille answers:
A) {{{f(x)=3x^2 + 18x - 5}}}...for (x,y)=(-3,-5)

{{{-5=3(-3)^2 + 18(-3) - 5}}}

{{{-5=3*9 -54 - 5}}}

{{{-5=27 -59}}}

{{{-5=-32}}}....pair (-3,-5) is not solution

B) {{{f(x)= -3x^2 + 3x - 5}}}...for (x,y)=(-3,-5)

{{{-5= -3(-3)^2 + 3(-3) - 5}}}

{{{-5= -3*9-9 - 5}}}

{{{-5= -27-9- 5}}}

{{{-5= -41}}}....pair (-3,-5) is not solution



C) {{{f(x)= -3x^2 - 18x -32}}}...for (x,y)=(-3,-5)

{{{-5= -3(-3)^2 - 18(-3) -32}}}

{{{-5= -27 + 54 -32}}}

{{{-5= -59 + 54 }}}

{{{-5= -5 }}}..........pair (-3,-5) {{{is}}} solution

check the second pair

{{{f(x)= -3x^2 - 18x -32}}}...for (x,y)=(-2,-8)

{{{-8= -3(-2)^2 - 18(-2) -32}}}

{{{-8= -12 + 36 -32}}}

{{{-8= -44 + 36 }}}

{{{-8= -8 }}}..........pair (-2,-8) {{{is}}} solution

check the third pair

{{{f(x)= -3x^2 - 18x -32}}}...for (x,y)=(6,-248)

{{{-248= -3(6)^2 - 18(6) -32}}}

{{{-248= -3*36 -108 -32}}}

{{{-248= -108 -108 -32}}}

{{{-248= -248 }}}..........pair (6,-248) {{{is}}} solution

so, the quadratic function that fits the set of data points (-3,-5), (-2,-8), (6,-248) is C) {{{f(x)= -3x^2 - 18x -32}}}

you do not have to check:

D) {{{f(x)= -2x^2 + 18x + 32}}}
E) None