Question 719165

The perimeter of a parallelogram is {{{P=2(a + b)}}} where {{{a}}} and {{{b}}} are the lengths of adjacent sides.

you are given: {{{a=MA}}}, {{{b=AT}}}, and {{{a:b=4:2}}}......eq. 1

{{{P=60}}}....eq. 2

from {{{a:b=4:2}}}......eq. 1, we have {{{2a=4b}}}...=>...{{{a=4b/2}}}..=>...{{{a=2b}}}...plug it in {{{60=2(a + b)}}}

{{{60=2(2b + b)}}}, and solve for {{{b}}}

{{{60=2(3b)}}}

{{{60=6b}}}

{{{highlight(10=b)}}}

now find {{{a}}}

{{{a=2b}}}

{{{a=2*10}}}

{{{highlight(a=20)}}}

check if their ratio is {{{4:2}}}

{{{20:10=4:2}}}


{{{(20/5):(10/5)=4:2}}}


{{{4:2=4:2}}}...this verifies our answer