Question 718715


Looking at the expression {{{18x^2+11x-24}}}, we can see that the first coefficient is {{{18}}}, the second coefficient is {{{11}}}, and the last term is {{{-24}}}.



Now multiply the first coefficient {{{18}}} by the last term {{{-24}}} to get {{{(18)(-24)=-432}}}.



Now the question is: what two whole numbers multiply to {{{-432}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{11}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-432}}} (the previous product).



Factors of {{{-432}}}:

1,2,3,4,6,8,9,12,16,18,24,27,36,48,54,72,108,144,216,432

-1,-2,-3,-4,-6,-8,-9,-12,-16,-18,-24,-27,-36,-48,-54,-72,-108,-144,-216,-432



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-432}}}.

1*(-432) = -432
2*(-216) = -432
3*(-144) = -432
4*(-108) = -432
6*(-72) = -432
8*(-54) = -432
9*(-48) = -432
12*(-36) = -432
16*(-27) = -432
18*(-24) = -432
(-1)*(432) = -432
(-2)*(216) = -432
(-3)*(144) = -432
(-4)*(108) = -432
(-6)*(72) = -432
(-8)*(54) = -432
(-9)*(48) = -432
(-12)*(36) = -432
(-16)*(27) = -432
(-18)*(24) = -432


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{11}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-432</font></td><td  align="center"><font color=black>1+(-432)=-431</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-216</font></td><td  align="center"><font color=black>2+(-216)=-214</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-144</font></td><td  align="center"><font color=black>3+(-144)=-141</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-108</font></td><td  align="center"><font color=black>4+(-108)=-104</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>6+(-72)=-66</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>8+(-54)=-46</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-48</font></td><td  align="center"><font color=black>9+(-48)=-39</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>12+(-36)=-24</font></td></tr><tr><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>16+(-27)=-11</font></td></tr><tr><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>18+(-24)=-6</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>432</font></td><td  align="center"><font color=black>-1+432=431</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>216</font></td><td  align="center"><font color=black>-2+216=214</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>144</font></td><td  align="center"><font color=black>-3+144=141</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>108</font></td><td  align="center"><font color=black>-4+108=104</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>-6+72=66</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>-8+54=46</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>48</font></td><td  align="center"><font color=black>-9+48=39</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>-12+36=24</font></td></tr><tr><td  align="center"><font color=red>-16</font></td><td  align="center"><font color=red>27</font></td><td  align="center"><font color=red>-16+27=11</font></td></tr><tr><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-18+24=6</font></td></tr></table>



From the table, we can see that the two numbers {{{-16}}} and {{{27}}} add to {{{11}}} (the middle coefficient).



So the two numbers {{{-16}}} and {{{27}}} both multiply to {{{-432}}} <font size=4><b>and</b></font> add to {{{11}}}



Now replace the middle term {{{11x}}} with {{{-16x+27x}}}. Remember, {{{-16}}} and {{{27}}} add to {{{11}}}. So this shows us that {{{-16x+27x=11x}}}.



{{{18x^2+highlight(-16x+27x)-24}}} Replace the second term {{{11x}}} with {{{-16x+27x}}}.



{{{(18x^2-16x)+(27x-24)}}} Group the terms into two pairs.



{{{2x(9x-8)+(27x-24)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(9x-8)+3(9x-8)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x+3)(9x-8)}}} Combine like terms. Or factor out the common term {{{9x-8}}}



===============================================================



Answer:



So {{{18x^2+11x-24}}} factors to {{{(2x+3)(9x-8)}}}.



In other words, {{{18x^2+11x-24=(2x+3)(9x-8)}}}.



Note: you can check the answer by expanding {{{(2x+3)(9x-8)}}} to get {{{18x^2+11x-24}}} or by graphing the original expression and the answer (the two graphs should be identical).