Question 718551


Looking at the expression {{{2x^2+13x+15}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{13}}}, and the last term is {{{15}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{15}}} to get {{{(2)(15)=30}}}.



Now the question is: what two whole numbers multiply to {{{30}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{13}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{30}}} (the previous product).



Factors of {{{30}}}:

1,2,3,5,6,10,15,30

-1,-2,-3,-5,-6,-10,-15,-30



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{30}}}.

1*30 = 30
2*15 = 30
3*10 = 30
5*6 = 30
(-1)*(-30) = 30
(-2)*(-15) = 30
(-3)*(-10) = 30
(-5)*(-6) = 30


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{13}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>1+30=31</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>2+15=17</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>3+10=13</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>5+6=11</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-1+(-30)=-31</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-2+(-15)=-17</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-3+(-10)=-13</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-5+(-6)=-11</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{10}}} add to {{{13}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{10}}} both multiply to {{{30}}} <font size=4><b>and</b></font> add to {{{13}}}



Now replace the middle term {{{13x}}} with {{{3x+10x}}}. Remember, {{{3}}} and {{{10}}} add to {{{13}}}. So this shows us that {{{3x+10x=13x}}}.



{{{2x^2+highlight(3x+10x)+15}}} Replace the second term {{{13x}}} with {{{3x+10x}}}.



{{{(2x^2+3x)+(10x+15)}}} Group the terms into two pairs.



{{{x(2x+3)+(10x+15)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(2x+3)+5(2x+3)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+5)(2x+3)}}} Combine like terms. Or factor out the common term {{{2x+3}}}



===============================================================



Answer:



So {{{2x^2+13x+15}}} factors to {{{(x+5)(2x+3)}}}.



In other words, {{{2x^2+13x+15=(x+5)(2x+3)}}}.



Note: you can check the answer by expanding {{{(x+5)(2x+3)}}} to get {{{2x^2+13x+15}}} or by graphing the original expression and the answer (the two graphs should be identical).