Question 716880
<font face="Times New Roman" size="+2">


No such triangle exists for any real number *[tex \LARGE n].  Now if you happened to have stated the problem incorrectly such that the hypotenuse is *[tex \LARGE 2n] and the legs are *[tex \LARGE n] and *[tex \LARGE n\sqrt{3}], then *[tex \LARGE n] can be any positive real number you like.


If the triangle you specified were to exist then:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sqrt{(2n)^2\ +\ n^2}\ =\ n\sqrt{3}]


Then


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sqrt{4n^2\ +\ n^2}\ =\ n\sqrt{3}]


Then


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sqrt{5n^2}\ =\ n\sqrt{3}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ n\sqrt{5}\ =\ n\sqrt{3}]


But...


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sqrt{5}\ \neq\ \sqrt{3}]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>