Question 711863


Looking at the expression {{{x^2+9x+18}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{9}}}, and the last term is {{{18}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{18}}} to get {{{(1)(18)=18}}}.



Now the question is: what two whole numbers multiply to {{{18}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{9}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{18}}} (the previous product).



Factors of {{{18}}}:

1,2,3,6,9,18

-1,-2,-3,-6,-9,-18



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{18}}}.

1*18 = 18
2*9 = 18
3*6 = 18
(-1)*(-18) = 18
(-2)*(-9) = 18
(-3)*(-6) = 18


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{9}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>1+18=19</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>2+9=11</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>6</font></td><td  align="center"><font color=red>3+6=9</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-1+(-18)=-19</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-2+(-9)=-11</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-3+(-6)=-9</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{6}}} add to {{{9}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{6}}} both multiply to {{{18}}} <font size=4><b>and</b></font> add to {{{9}}}



Now replace the middle term {{{9x}}} with {{{3x+6x}}}. Remember, {{{3}}} and {{{6}}} add to {{{9}}}. So this shows us that {{{3x+6x=9x}}}.



{{{x^2+highlight(3x+6x)+18}}} Replace the second term {{{9x}}} with {{{3x+6x}}}.



{{{(x^2+3x)+(6x+18)}}} Group the terms into two pairs.



{{{x(x+3)+(6x+18)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+3)+6(x+3)}}} Factor out {{{6}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+6)(x+3)}}} Combine like terms. Or factor out the common term {{{x+3}}}



===============================================================



Answer:



So {{{x^2+9x+18}}} factors to {{{(x+6)(x+3)}}}.



In other words, {{{x^2+9x+18=(x+6)(x+3)}}}.



Note: you can check the answer by expanding {{{(x+6)(x+3)}}} to get {{{x^2+9x+18}}} or by graphing the original expression and the answer (the two graphs should be identical).