Question 711257
<pre>
We use the fact that 

cos(&#1012;) = -cos(180°-&#1012;) or cos(&#1012;)+cos(180°-&#1012;) = 0

cos(1°) + cos(179°) = 0
cos(2°) + cos(178°) = 0
cos(3°) + cos(177°) = 0
...
cos(87°) + cos(93°) = 0
cos(88°) + cos(92°) = 0
cos(89°) + cos(91°) = 0

cos(181°) + cos(359°)

and 

We use the fact that

cos(180°+&#1012;) = -cos(360°-&#1012;) or cos(180°+&#1012;)+cos(360°-&#1012;) = 0

cos(181°) + cos(359°) = 0
cos(182°) + cos(358°) = 0
cos(183°) + cos(357°) = 0
...
cos(267°) + cos(273°) = 0
cos(268°) + cos(272°) = 0
cos(269°) + cos(271°) = 0

So all those cosines in the sum cancel out.
Thus the only cosines in that sum that we haven't 
considered are 

cos(90°) = 0, cos(180°) = -1, and cos(270°) = 0

And their sum is -1.   So that's the answer, -1.

Edwin</pre>