Question 62717
Because the equation is the difference of two perfect squares, it factors into {{{expr(y/5)+expr(x/8)}}} and {{{expr(y/5)-expr(x/8)}}}.  So you have two equations to solve.  Solving each for y we get {{{y=-expr(5/8)x+5}}} and {{{y=expr(5/8)x+5}}}.  The graph is below and the solution is where they intersect, which is (0,5).
{{{graph(200,200,-5,5,-2,8,-5x/8+5,5x/8+5)}}}