Question 708894


{{{-2x^2-3x+6}}} Start with the given expression.



{{{-(2x^2+3x-6)}}} Factor out the GCF {{{-1}}}.



Now let's try to factor the inner expression {{{2x^2+3x-6}}}



---------------------------------------------------------------



Looking at the expression {{{2x^2+3x-6}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{3}}}, and the last term is {{{-6}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{-6}}} to get {{{(2)(-6)=-12}}}.



Now the question is: what two whole numbers multiply to {{{-12}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{3}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-12}}} (the previous product).



Factors of {{{-12}}}:

1,2,3,4,6,12

-1,-2,-3,-4,-6,-12



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-12}}}.

1*(-12) = -12
2*(-6) = -12
3*(-4) = -12
(-1)*(12) = -12
(-2)*(6) = -12
(-3)*(4) = -12


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{3}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>1+(-12)=-11</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>2+(-6)=-4</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>3+(-4)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-1+12=11</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-2+6=4</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-3+4=1</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{3}}}. So {{{2x^2+3x-6}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{-2x^2-3x+6}}} simply factors to {{{-(2x^2+3x-6)}}}



In other words, {{{-2x^2-3x+6=-(2x^2+3x-6)}}}.