Question 708071
 if the line meets the {{{x-axis}}} at {{{x=6}}} and the {{{y-axis}}} at {{{y=-10}}}, means passes through the points:

 ({{{x[1]}}},{{{y[1]}}})=({{{6}}},{{{0}}}) and 
 
({{{x[2]}}},{{{y[2]}}})=({{{0}}},{{{-10}}})

if we know two points, we can find  the equation of the line

first find a slope {{{m}}}:

{{{m=(y[2]-y[1])/(x[2]-x[1])}}}

{{{m=(-10-0)/(0-6)}}}

{{{m=-10/-6}}}

{{{m=1.6666666666666666666666666666667}}}....round it

{{{m=1.67}}}

y-intercept is found from equation: {{{y[1]=mx[1] +b}}}

{{{0=1.67*6 +b}}}

{{{0=10.02 +b}}}...round it to whole number

{{{-10=b}}}

so, the equation of the line is {{{y=1.67x-10}}}


{{{drawing(600,600,-15,15,-15,15,grid(0),circle(6,0,0.2),circle(0,-10,0.2),graph(600,600,-15,15,-15,15,1.67*x-10))}}}