Question 707391


Looking at the expression {{{9r^2-30r+25}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{-30}}}, and the last term is {{{25}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{25}}} to get {{{(9)(25)=225}}}.



Now the question is: what two whole numbers multiply to {{{225}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-30}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{225}}} (the previous product).



Factors of {{{225}}}:

1,3,5,9,15,25,45,75,225

-1,-3,-5,-9,-15,-25,-45,-75,-225



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{225}}}.

1*225 = 225
3*75 = 225
5*45 = 225
9*25 = 225
15*15 = 225
(-1)*(-225) = 225
(-3)*(-75) = 225
(-5)*(-45) = 225
(-9)*(-25) = 225
(-15)*(-15) = 225


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-30}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>225</font></td><td  align="center"><font color=black>1+225=226</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>75</font></td><td  align="center"><font color=black>3+75=78</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>5+45=50</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>9+25=34</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>15+15=30</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-225</font></td><td  align="center"><font color=black>-1+(-225)=-226</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-75</font></td><td  align="center"><font color=black>-3+(-75)=-78</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-5+(-45)=-50</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-9+(-25)=-34</font></td></tr><tr><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-15+(-15)=-30</font></td></tr></table>



From the table, we can see that the two numbers {{{-15}}} and {{{-15}}} add to {{{-30}}} (the middle coefficient).



So the two numbers {{{-15}}} and {{{-15}}} both multiply to {{{225}}} <font size=4><b>and</b></font> add to {{{-30}}}



Now replace the middle term {{{-30r}}} with {{{-15r-15r}}}. Remember, {{{-15}}} and {{{-15}}} add to {{{-30}}}. So this shows us that {{{-15r-15r=-30r}}}.



{{{9r^2+highlight(-15r-15r)+25}}} Replace the second term {{{-30r}}} with {{{-15r-15r}}}.



{{{(9r^2-15r)+(-15r+25)}}} Group the terms into two pairs.



{{{3r(3r-5)+(-15r+25)}}} Factor out the GCF {{{3r}}} from the first group.



{{{3r(3r-5)-5(3r-5)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3r-5)(3r-5)}}} Combine like terms. Or factor out the common term {{{3r-5}}}



{{{(3r-5)^2}}} Condense the terms.



===============================================================



Answer:



So {{{9r^2-30r+25}}} factors to {{{(3r-5)^2}}}.



In other words, {{{9r^2-30r+25=(3r-5)^2}}}.



Note: you can check the answer by expanding {{{(3r-5)^2}}} to get {{{9r^2-30r+25}}} or by graphing the original expression and the answer (the two graphs should be identical).