Question 706530


Looking at the expression {{{9x^2+4x-2}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{4}}}, and the last term is {{{-2}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{-2}}} to get {{{(9)(-2)=-18}}}.



Now the question is: what two whole numbers multiply to {{{-18}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{4}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-18}}} (the previous product).



Factors of {{{-18}}}:

1,2,3,6,9,18

-1,-2,-3,-6,-9,-18



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-18}}}.

1*(-18) = -18
2*(-9) = -18
3*(-6) = -18
(-1)*(18) = -18
(-2)*(9) = -18
(-3)*(6) = -18


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{4}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>1+(-18)=-17</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>2+(-9)=-7</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>3+(-6)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-1+18=17</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-2+9=7</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-3+6=3</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{4}}}. So {{{9x^2+4x-2}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{9x^2+4x-2}}} doesn't factor at all (over the rational numbers).



So {{{9x^2+4x-2}}} is prime.