Question 704617


{{{16x^2-86x+30}}} Start with the given expression.



{{{2(8x^2-43x+15)}}} Factor out the GCF {{{2}}}.



Now let's try to factor the inner expression {{{8x^2-43x+15}}}



---------------------------------------------------------------



Looking at the expression {{{8x^2-43x+15}}}, we can see that the first coefficient is {{{8}}}, the second coefficient is {{{-43}}}, and the last term is {{{15}}}.



Now multiply the first coefficient {{{8}}} by the last term {{{15}}} to get {{{(8)(15)=120}}}.



Now the question is: what two whole numbers multiply to {{{120}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-43}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{120}}} (the previous product).



Factors of {{{120}}}:

1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120

-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{120}}}.

1*120 = 120
2*60 = 120
3*40 = 120
4*30 = 120
5*24 = 120
6*20 = 120
8*15 = 120
10*12 = 120
(-1)*(-120) = 120
(-2)*(-60) = 120
(-3)*(-40) = 120
(-4)*(-30) = 120
(-5)*(-24) = 120
(-6)*(-20) = 120
(-8)*(-15) = 120
(-10)*(-12) = 120


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-43}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>120</font></td><td  align="center"><font color=black>1+120=121</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>2+60=62</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>3+40=43</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>4+30=34</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>5+24=29</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>6+20=26</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>8+15=23</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>10+12=22</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-120</font></td><td  align="center"><font color=black>-1+(-120)=-121</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-2+(-60)=-62</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>-40</font></td><td  align="center"><font color=red>-3+(-40)=-43</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-4+(-30)=-34</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-5+(-24)=-29</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-6+(-20)=-26</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-8+(-15)=-23</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-10+(-12)=-22</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{-40}}} add to {{{-43}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{-40}}} both multiply to {{{120}}} <font size=4><b>and</b></font> add to {{{-43}}}



Now replace the middle term {{{-43x}}} with {{{-3x-40x}}}. Remember, {{{-3}}} and {{{-40}}} add to {{{-43}}}. So this shows us that {{{-3x-40x=-43x}}}.



{{{8x^2+highlight(-3x-40x)+15}}} Replace the second term {{{-43x}}} with {{{-3x-40x}}}.



{{{(8x^2-3x)+(-40x+15)}}} Group the terms into two pairs.



{{{x(8x-3)+(-40x+15)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(8x-3)-5(8x-3)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-5)(8x-3)}}} Combine like terms. Or factor out the common term {{{8x-3}}}



--------------------------------------------------



So {{{2(8x^2-43x+15)}}} then factors further to {{{2(x-5)(8x-3)}}}



===============================================================



Answer:



So {{{16x^2-86x+30}}} completely factors to {{{2(x-5)(8x-3)}}}.



In other words, {{{16x^2-86x+30=2(x-5)(8x-3)}}}.



Note: you can check the answer by expanding {{{2(x-5)(8x-3)}}} to get {{{16x^2-86x+30}}} or by graphing the original expression and the answer (the two graphs should be identical).


<font color="red">--------------------------------------------------------------------------------------------------------------</font>


If you need more help, you can email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


To find other ways to contact me, you can also visit my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a>


Thanks,


Jim


<font color="red">--------------------------------------------------------------------------------------------------------------</font>