Question 703574


{{{21y^3-36y^2-12y}}} Start with the given expression.



{{{3y(7y^2-12y-4)}}} Factor out the GCF {{{3y}}}.



Now let's try to factor the inner expression {{{7y^2-12y-4}}}



---------------------------------------------------------------



Looking at the expression {{{7y^2-12y-4}}}, we can see that the first coefficient is {{{7}}}, the second coefficient is {{{-12}}}, and the last term is {{{-4}}}.



Now multiply the first coefficient {{{7}}} by the last term {{{-4}}} to get {{{(7)(-4)=-28}}}.



Now the question is: what two whole numbers multiply to {{{-28}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-12}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-28}}} (the previous product).



Factors of {{{-28}}}:

1,2,4,7,14,28

-1,-2,-4,-7,-14,-28



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-28}}}.

1*(-28) = -28
2*(-14) = -28
4*(-7) = -28
(-1)*(28) = -28
(-2)*(14) = -28
(-4)*(7) = -28


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-12}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>1+(-28)=-27</font></td></tr><tr><td  align="center"><font color=red>2</font></td><td  align="center"><font color=red>-14</font></td><td  align="center"><font color=red>2+(-14)=-12</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>4+(-7)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>-1+28=27</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-2+14=12</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-4+7=3</font></td></tr></table>



From the table, we can see that the two numbers {{{2}}} and {{{-14}}} add to {{{-12}}} (the middle coefficient).



So the two numbers {{{2}}} and {{{-14}}} both multiply to {{{-28}}} <font size=4><b>and</b></font> add to {{{-12}}}



Now replace the middle term {{{-12y}}} with {{{2y-14y}}}. Remember, {{{2}}} and {{{-14}}} add to {{{-12}}}. So this shows us that {{{2y-14y=-12y}}}.



{{{7y^2+highlight(2y-14y)-4}}} Replace the second term {{{-12y}}} with {{{2y-14y}}}.



{{{(7y^2+2y)+(-14y-4)}}} Group the terms into two pairs.



{{{y(7y+2)+(-14y-4)}}} Factor out the GCF {{{y}}} from the first group.



{{{y(7y+2)-2(7y+2)}}} Factor out {{{2}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(y-2)(7y+2)}}} Combine like terms. Or factor out the common term {{{7y+2}}}



--------------------------------------------------



So {{{3y(7y^2-12y-4)}}} then factors further to {{{3y(y-2)(7y+2)}}}



===============================================================



Answer:



So {{{21y^3-36y^2-12y}}} completely factors to {{{3y(y-2)(7y+2)}}}.



In other words, {{{21y^3-36y^2-12y=3y(y-2)(7y+2)}}}.



Note: you can check the answer by expanding {{{3y(y-2)(7y+2)}}} to get {{{21y^3-36y^2-12y}}} or by graphing the original expression and the answer (the two graphs should be identical).