Question 702317

{{{3^x =54}}}......use log to solve for {{{x}}}


{{{log((3^x)) =log((54))}}}


{{{xlog((3)) =log((54))}}}


{{{x =log((54))/log((3))}}}


{{{x =log((54))/log((3))}}}


{{{x =log((27*2))/log((3))}}}

{{{x =log((3^3*2))/log((3))}}}


{{{x =(log((3^3))+log((2)))/log((3))}}}


{{{x =(3log((3))+log((2)))/log((3))}}}


{{{x =3log((3))/log((3))+log((2))/log((3))}}}


{{{x =3cross(log((3)))/cross(log((3)))+log((2))/log((3))}}}


{{{x =3+log((2))/log((3))}}}


{{{x =3+0.630929753571457}}}


{{{x =3.630929753571457}}}.......so, the answer {{{is}}} {{{3<x<4}}}

{{{3<3.630929753571457<4}}}....true