Question 697929


Looking at the expression {{{4x^2-2x+7}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-2}}}, and the last term is {{{7}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{7}}} to get {{{(4)(7)=28}}}.



Now the question is: what two whole numbers multiply to {{{28}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{28}}} (the previous product).



Factors of {{{28}}}:

1,2,4,7,14,28

-1,-2,-4,-7,-14,-28



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{28}}}.

1*28 = 28
2*14 = 28
4*7 = 28
(-1)*(-28) = 28
(-2)*(-14) = 28
(-4)*(-7) = 28


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>1+28=29</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>2+14=16</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>4+7=11</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-1+(-28)=-29</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-2+(-14)=-16</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-4+(-7)=-11</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{-2}}}. So {{{4x^2-2x+7}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{4x^2-2x+7}}} doesn't factor at all (over the rational numbers).



So {{{4x^2-2x+7}}} is prime.