Question 697719
a2= 6 and a5= 0.048
<pre>
Use the formula:

a<sub>n</sub> = a<sub>1</sub>r<sup>(n-1)</sup>

First with n=2

a<sub>2</sub> = a<sub>1</sub>r<sup>(2-1)</sup>

6 = a<sub>1</sub>r<sup>1</sup>

6 = a<sub>1</sub>r

{{{6/r}}} = a<sub>1</sub>

And then with n=5

a<sub>5</sub> = a<sub>1</sub>r<sup>(5-1)</sup>

0.048 = a<sub>1</sub>r<sup>4</sup>

{{{0.048/r^4}}} = a<sub>1</sub>

Equating the expressions for a<sub>1</sub>

{{{6/r}}} = {{{0.048/r^4}}}

Cross multiplying

6r<sup>4</sup> = 0.048r

Divide both side by 6r

r³ = {{{0.048/6}}}

r³ = 0.008

Taking cube roots of both sides

 r = {{{root(3,0.008)}}}

 r = 0.2

Edwin</pre>