Question 697176


{{{A=P(1+r/n)^(n*t)}}} Start with the compound interest formula



{{{A=500(1+0.06/12)^(12*5)}}} Plug in {{{P=500}}}, {{{r=0.06}}} (the decimal equivalent of 6%), {{{n=12}}} and {{{t=5}}}.



{{{A=500(1+0.005)^(12*5)}}} Evaluate {{{0.06/12}}} to get {{{0.005}}}



{{{A=500(1.005)^(12*5)}}} Add {{{1}}} to {{{0.005}}} to get {{{1.005}}}



{{{A=500(1.005)^(60)}}} Multiply {{{12}}} and {{{5}}} to get {{{60}}}.



{{{A=500(1.34885015254931)}}} Evaluate {{{(1.005)^(60)}}} to get {{{1.34885015254931}}}.



{{{A=674.425076274654}}} Multiply {{{500}}} and {{{1.34885015254931}}} to get {{{674.425076274654}}}.



{{{A=674.43}}} Round to the nearest hundredth (ie to the nearest penny).



So the answer is 674.43