Question 695374
<font face="Times New Roman" size="+2">


The vertex of the parabola *[tex \LARGE \rho(x)\ =\ ax^2\ +\ bx\ +\ c] has an *[tex \LARGE x] coordinate at *[tex \LARGE \frac{-b}{2a} ] and a *[tex \LARGE y] coordinate at *[tex \LARGE \rho\left(\frac{-b}{2a}\right) \ =\ a\left(\frac{-b}{2a}\right)^2\ +\ b\left(\frac{-b}{2a}\right)\ +\ c].  I don't know what you mean by "describe the meaning of" in the context of a quadratic trinomial.  Do you want a description of the relationship of the vertex point to the rest of the points that comprise the parabola?


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>


*[tex \LARGE \ \ \ \ \ \ \ \ \ \