Question 695305


Looking at the expression {{{x^2+14xy+45y^2}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{14}}}, and the last coefficient is {{{45}}}.



Now multiply the first coefficient {{{1}}} by the last coefficient {{{45}}} to get {{{(1)(45)=45}}}.



Now the question is: what two whole numbers multiply to {{{45}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{14}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{45}}} (the previous product).



Factors of {{{45}}}:

1,3,5,9,15,45

-1,-3,-5,-9,-15,-45



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{45}}}.

1*45 = 45
3*15 = 45
5*9 = 45
(-1)*(-45) = 45
(-3)*(-15) = 45
(-5)*(-9) = 45


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{14}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>1+45=46</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>3+15=18</font></td></tr><tr><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>9</font></td><td  align="center"><font color=red>5+9=14</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-1+(-45)=-46</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-3+(-15)=-18</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-5+(-9)=-14</font></td></tr></table>



From the table, we can see that the two numbers {{{5}}} and {{{9}}} add to {{{14}}} (the middle coefficient).



So the two numbers {{{5}}} and {{{9}}} both multiply to {{{45}}} <font size=4><b>and</b></font> add to {{{14}}}



Now replace the middle term {{{14xy}}} with {{{5xy+9xy}}}. Remember, {{{5}}} and {{{9}}} add to {{{14}}}. So this shows us that {{{5xy+9xy=14xy}}}.



{{{x^2+highlight(5xy+9xy)+45y^2}}} Replace the second term {{{14xy}}} with {{{5xy+9xy}}}.



{{{(x^2+5xy)+(9xy+45y^2)}}} Group the terms into two pairs.



{{{x(x+5y)+(9xy+45y^2)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+5y)+9y(x+5y)}}} Factor out {{{9y}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+9y)(x+5y)}}} Combine like terms. Or factor out the common term {{{x+5y}}}



===============================================================



Answer:



So {{{x^2+14xy+45y^2}}} factors to {{{(x+9y)(x+5y)}}}.



In other words, {{{x^2+14xy+45y^2=(x+9y)(x+5y)}}}.



Note: you can check the answer by expanding {{{(x+9y)(x+5y)}}} to get {{{x^2+14xy+45y^2}}} or by graphing the original expression and the answer (the two graphs should be identical).