Question 691429


Looking at the expression {{{x^2-2x-8}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-2}}}, and the last term is {{{-8}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-8}}} to get {{{(1)(-8)=-8}}}.



Now the question is: what two whole numbers multiply to {{{-8}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-8}}} (the previous product).



Factors of {{{-8}}}:

1,2,4,8

-1,-2,-4,-8



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-8}}}.

1*(-8) = -8
2*(-4) = -8
(-1)*(8) = -8
(-2)*(4) = -8


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>1+(-8)=-7</font></td></tr><tr><td  align="center"><font color=red>2</font></td><td  align="center"><font color=red>-4</font></td><td  align="center"><font color=red>2+(-4)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-1+8=7</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-2+4=2</font></td></tr></table>



From the table, we can see that the two numbers {{{2}}} and {{{-4}}} add to {{{-2}}} (the middle coefficient).



So the two numbers {{{2}}} and {{{-4}}} both multiply to {{{-8}}} <font size=4><b>and</b></font> add to {{{-2}}}



Now replace the middle term {{{-2x}}} with {{{2x-4x}}}. Remember, {{{2}}} and {{{-4}}} add to {{{-2}}}. So this shows us that {{{2x-4x=-2x}}}.



{{{x^2+highlight(2x-4x)-8}}} Replace the second term {{{-2x}}} with {{{2x-4x}}}.



{{{(x^2+2x)+(-4x-8)}}} Group the terms into two pairs.



{{{x(x+2)+(-4x-8)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+2)-4(x+2)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-4)(x+2)}}} Combine like terms. Or factor out the common term {{{x+2}}}



===============================================================



Answer:



So {{{x^2-2x-8}}} factors to {{{(x-4)(x+2)}}}.



In other words, {{{x^2-2x-8=(x-4)(x+2)}}}.



Note: you can check the answer by expanding {{{(x-4)(x+2)}}} to get {{{x^2-2x-8}}} or by graphing the original expression and the answer (the two graphs should be identical).