Question 690752
<font face="Times New Roman" size="+2">
<pre>


If 6 - 5i is a zero, then 6 + 5i must also be a zero.  Therefore both [x - (6 - 5i)] and [x - (6 + 5i)] are factors of the given polynomial function.


Multiply the two factors to get x<sup>2</sup> - 12x + 61, which, since it is a composite of two factors of the given polynomial must also be a factor of the given polynomial.


Use polynomial long division to find the other quadratic factor of the given quartic:

                              x<sup>2</sup> -   6x -   55
              ---------------------------------
x<sup>2</sup> - 12x + 61 | x<sup>4</sup> - 18x<sup>3</sup> + 78x<sup>2</sup> + 294x - 3355
                x<sup>4</sup> - 12x<sup>3</sup> + 61x<sup>2</sup>
              -------------------------
                   -  6x<sup>3</sup> + 17x<sup>2</sup> + 294x
                   -  6x<sup>3</sup> + 72x<sup>2</sup> - 366x
                   ---------------------------
                          - 55x<sup>2</sup> + 660x - 3355
                          - 55x<sup>2</sup> + 660x - 3355
                         ---------------------
                                             0

Finally, factor  x<sup>2</sup> - 6x - 55 = (x + 5)(x - 11) from which you can get your final two zeros.


</pre>
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>