Question 689851
Let the tens digit be t and the ones digit be 1 .
You are told {{{t + o = 14}}} --> {{{t = 14 - o}}}
Also {{{10t + o = t^2 + o^2  - 11}}}
So
{{{10*(14 - o) + o = (14-o)^2 + o^2 - 11}}}
{{{140 - 9o = 196 - 28o + o^2 + o^2 - 11}}}
{{{0 = 2o^2 - 19o + 45}}}
*[invoke quadratic "x", 2, -19, 45 ]
So the only integer answer is o = 5. Which means t = 14-5 = 9