Question 61872
Solve the equation 2^3x=4^(x-1) by getting a common base.
{{{2^3x=(2^2)^(x-1)}}}
{{{2^(3x)=2^(2(x-1))}}}
3x=2(x-1)
3x=2x-2
3x-2x=2x-2x-2
{{{highlight(x=-2)}}}
Check:
{{{2^(3(-2))=4^(-2-1)}}}
{{{2^(-6)=4^(-3)}}}
{{{1/(2^6)=1/4^3}}}
{{{1/64=1/64}}}  We're right!!!!
Happy Calculating!!!