Question 687904
how to find domain and range in general:
    ({{{2}}}, {{{-3}}}), ({{{4}}}, {{{6}}}), ({{{3}}}, {{{-1}}}), ({{{6}}}, {{{6}}}), ({{{2}}}, {{{3}}})}

    The above list of points, being a relationship between certain x's and certain y's, is a relation. 

The {{{domain}}} is all the {{{x-values}}}, and the {{{range}}} is all the {{{y-values}}}. To give the domain and the range, I just list the values without duplication:

        domain:  {.{{{2}}}, {{{3}}},{{{ 4}}}, {{{6}}}.}

        range:  {.{{{-3}}}, {{{-1}}}, {{{3}}},{{{ 6}}}.}


the domain and range of {{{f(x)=x^2-1}}}

let' se the graph:

{{{ graph( 600, 600, -10, 10, -10, 10, x^2-1) }}}


as you can see, can take any real number for {{{x}}} and 


domain: {{{all}}} {{{real}}} {{{numbers}}}

or ({{{-infinity}}}, {{{infinity}}})

range:  {{{all}}} {{{real}}} {{{numbers}}} for {{{y>=-1}}}

or ({{{-1}}}, {{{infinity}}})