Question 687136


Looking at the expression {{{2w^2+13w+20}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{13}}}, and the last term is {{{20}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{20}}} to get {{{(2)(20)=40}}}.



Now the question is: what two whole numbers multiply to {{{40}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{13}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{40}}} (the previous product).



Factors of {{{40}}}:

1,2,4,5,8,10,20,40

-1,-2,-4,-5,-8,-10,-20,-40



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{40}}}.

1*40 = 40
2*20 = 40
4*10 = 40
5*8 = 40
(-1)*(-40) = 40
(-2)*(-20) = 40
(-4)*(-10) = 40
(-5)*(-8) = 40


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{13}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>1+40=41</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>2+20=22</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>4+10=14</font></td></tr><tr><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>8</font></td><td  align="center"><font color=red>5+8=13</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>-1+(-40)=-41</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-2+(-20)=-22</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-4+(-10)=-14</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-5+(-8)=-13</font></td></tr></table>



From the table, we can see that the two numbers {{{5}}} and {{{8}}} add to {{{13}}} (the middle coefficient).



So the two numbers {{{5}}} and {{{8}}} both multiply to {{{40}}} <font size=4><b>and</b></font> add to {{{13}}}



Now replace the middle term {{{13w}}} with {{{5w+8w}}}. Remember, {{{5}}} and {{{8}}} add to {{{13}}}. So this shows us that {{{5w+8w=13w}}}.



{{{2w^2+highlight(5w+8w)+20}}} Replace the second term {{{13w}}} with {{{5w+8w}}}.



{{{(2w^2+5w)+(8w+20)}}} Group the terms into two pairs.



{{{w(2w+5)+(8w+20)}}} Factor out the GCF {{{w}}} from the first group.



{{{w(2w+5)+4(2w+5)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(w+4)(2w+5)}}} Combine like terms. Or factor out the common term {{{2w+5}}}



===============================================================



Answer:



So {{{2w^2+13w+20}}} factors to {{{(w+4)(2w+5)}}}.



In other words, {{{2w^2+13w+20=(w+4)(2w+5)}}}.



Note: you can check the answer by expanding {{{(w+4)(2w+5)}}} to get {{{2w^2+13w+20}}} or by graphing the original expression and the answer (the two graphs should be identical).