Question 686537
Use the quadratic formula to solve for x


{{{x = (-b+-sqrt(b^2-4ac))/(2a)}}}


{{{x = (-(4)+-sqrt((4)^2-4(1)(19)))/(2(1))}}} Plug in {{{a = 1}}}, {{{b = 4}}}, {{{c = 19}}}


{{{x = (-4+-sqrt(16-(76)))/(2)}}}


{{{x = (-4+-sqrt(-60))/2}}}


{{{x = (-4+sqrt(-60))/2}}} or {{{x = (-4-sqrt(-60))/2}}}


{{{x = (-4+2i*sqrt(15))/2}}} or {{{x = (-4-2i*sqrt(15))/2}}}


{{{x = -2+i*sqrt(15)}}} or {{{x = -2-i*sqrt(15)}}}


So the two exact solutions are {{{x = -2+i*sqrt(15)}}} or {{{x = -2-i*sqrt(15)}}}