Question 685774

1.

In a {{{composite}}} {{{function}}}, the {{{output}}} of the {{{inside}}} function is the {{{input}}} of the {{{outside}}}{{{ function}}}. 

That is, in {{{f(g(x))}}}, the {{{output}}} of {{{g(x)}}} is the {{{input}}} of {{{f(x)}}}.

2.

 If the radicand contains {{{no}}} perfect square factors, the radical is {{{in}}}{{{ simplest}}}{{{ form}}}.

3.

Like radicals have the same radicand and the same index.

4.

The inverse of a function {{{does}}}{{{ not}}} have to be a function. In fact, the inverse of any {{{even}}} function is {{{not}}} a {{{function}}} when the {{{domain}}} is the {{{real}}} numbers. 

For example, the {{{inverse}}} of {{{y = x^2}}} is not a function unless the {{{domain}}} is {{{limited}}} to {{{positive}}} numbers.