Question 682346
<pre>
Here it is broken all the way down:

{{{(1+i)^17/(1-i)^16}}}

Write the numerator as {{{(1+i)^1(1+i)^16}}} or {{{(1+i)(1+i)^16}}}

{{{(1+i)(1+i)^16/(1-i)^16}}}

Then as

{{{(1+i)(((1+i))/((1-i)))^16}}}

Now we rationalize the denominator inside the parentheses
of base of the 16 power:

{{{(1+i)(
expr(((1+i))/((1-i)))*

expr(((1+i))/((1+i)))


)^16}}}

{{{(1+i)(


expr(((1+i+i+i^2))/((1+i-i-i^2)))


)^16}}}

{{{(1+i)(


expr(((1+2i+
(-1)))/((1-(-1))))


)^16}}}

{{{(1+i)


(expr(   (1+2i-1)/2)


)^16}}}

{{{(1+i)


(expr(   (2i)/2)


)^16}}}

{{{(1+i)i^16}}}

{{{(1+i)(i^2)^8}}}

{{{(1+i)(-1)^8}}}

{{{(1+i)*1}}}

{{{1+i}}}

Edwin</pre>