Question 680519
Use identtities to write in terms of sin(x) or cos(x), then simplify.

A) {{{csc^2(x)+sec^2(x)}}}
B) {{{cot(x)/sec(x)}}}

-----------------
Not sure on where to go next
A){{{csc^2(x)+sec^2(x)}}}
{{{(1+cot^2(x))+(tan^2(x)+1)}}}
{{{2 + (cos^2(x)/sin^2(x))+ (sin^2(x)/cos^2(x))}}}
--------------
A) {{{csc^2(x)+sec^2(x)}}}
= {{{1/sin^2(x) + 1/cos^2(x)}}}
= {{{(sin^2(x) + cos^2(x))/(sin^2(x)*cos^2(x))}}}
= {{{1/(sin^2(x)*cos^2(x))}}}
-------------------------------
B){{{cot(x)/sec(x)}}}
{{{(cos(x)/sin(x))/(1/sin(x))}}}
= cos(x)