Question 674695


{{{10^x=35}}}


{{{2^x*5^x=5*7}}}

{{{x=(log(7)+log(5))/(log(2)+log(5))}}}


{{{x=(1.6094379124341003746007593332261876395256013542685177+1.9459101490553133051053527434431797296370847295818611)/(0.6931471805599453094172321214581765680755001343602552+1.6094379124341003746007593332261876395256013542685177)}}}


{{{x=(3.5553480614894136797061120766693673691626860838503787)/(2.3025850929940456840179914546843642076011014886287728)}}}


{{{x=1.5440680443502756354984773638681431667153825148618568}}}

note, only if you put whole decimal numbers, the result is true and gives you exactly {{{35}}}, but if you round them it will not give you exactly {{{35}}}


so, if you take rounded numbers, we have:

{{{x=(1.61+1.95)/(0.69+1.61)}}}

{{{x=(3.56)/(2.3)}}}

{{{x=1.5478260869565217391304347826087}}}

{{{x=1.55}}}

then

{{{10^(1.55)=35.4813}}}