Question 674414


{{{m^2-8m=-14}}}

{{{m^2-8m+14=0}}}


{{{discriminant= b^2 − 4ac}}}

{{{discriminant= (-8)^2 − 4*1*14}}}

{{{discriminant= 64 − 56}}}

{{{discriminant= 8}}}



 the number of roots: {{{2}}} roots because we have function of degree {{{2}}}

the type of roots: both are real roots because discriminant is positive number



the exact answer using quadratic formula:

{{{m= (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}


{{{m= (-(-8) +- sqrt( (-8) ^2-4*1*14  ))/(2*1) }}}


{{{m= (8 +- sqrt(64-56  ))/2 }}}


{{{m= (8 +- sqrt(8 ))/2 }}}


{{{m= (8 +- 2.83)/2 }}}


roots:

{{{m= (8 + 2.83)/2 }}}

{{{m= 10.83/2 }}}

{{{m=5.415 }}}


and

{{{m= (8 -2.83)/2 }}}

{{{m= 5.17/2 }}}

{{{m=2.585 }}}