Question 672867


Looking at the expression {{{9y^2+17y-2}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{17}}}, and the last term is {{{-2}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{-2}}} to get {{{(9)(-2)=-18}}}.



Now the question is: what two whole numbers multiply to {{{-18}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{17}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-18}}} (the previous product).



Factors of {{{-18}}}:

1,2,3,6,9,18

-1,-2,-3,-6,-9,-18



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-18}}}.

1*(-18) = -18
2*(-9) = -18
3*(-6) = -18
(-1)*(18) = -18
(-2)*(9) = -18
(-3)*(6) = -18


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{17}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>1+(-18)=-17</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>2+(-9)=-7</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>3+(-6)=-3</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>18</font></td><td  align="center"><font color=red>-1+18=17</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-2+9=7</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-3+6=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{18}}} add to {{{17}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{18}}} both multiply to {{{-18}}} <font size=4><b>and</b></font> add to {{{17}}}



Now replace the middle term {{{17y}}} with {{{-y+18y}}}. Remember, {{{-1}}} and {{{18}}} add to {{{17}}}. So this shows us that {{{-y+18y=17y}}}.



{{{9y^2+highlight(-y+18y)-2}}} Replace the second term {{{17y}}} with {{{-y+18y}}}.



{{{(9y^2-y)+(18y-2)}}} Group the terms into two pairs.



{{{y(9y-1)+(18y-2)}}} Factor out the GCF {{{y}}} from the first group.



{{{y(9y-1)+2(9y-1)}}} Factor out {{{2}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(y+2)(9y-1)}}} Combine like terms. Or factor out the common term {{{9y-1}}}



===============================================================



Answer:



So {{{9y^2+17y-2}}} factors to {{{(y+2)(9y-1)}}}.



In other words, {{{9y^2+17y-2=(y+2)(9y-1)}}}.



Note: you can check the answer by expanding {{{(y+2)(9y-1)}}} to get {{{9y^2+17y-2}}} or by graphing the original expression and the answer (the two graphs should be identical).