Question 672614
{{{f(x) = (x^2-6x)}}} and {{{g(x) = ( x+4)}}}

{{{f(x) = (x^2-6x)}}}..=>...{{{f(x) = x(x-6)}}}; so, roots are


{{{x(x-6)=0}}}

if {{{x=0}}}, then {{{x=0}}}........one point is ({{{0}}},{{{0}}})

if {{{x-6=0}}}, then {{{x=6}}}.....second point is ({{{6}}},{{{0}}})

find few more points and make a table

{{{f(x) = (x^2-6x)}}}..let {{{x=1}}}

{{{f(1) = (1^2-6*1)}}}.....=> {{{f(1) = 1-6}}}...=> {{{f(1) = -5}}}...third point is ({{{1}}},{{{-5}}})

{{{f(x) = (x^2-6x)}}}..let {{{x=-1}}}

{{{f(-1) = ((-1)^2-6*(-1)1)}}}.....=> {{{f(-1) = 1+6}}}...=> {{{f(-1) = 7}}}...third point is ({{{-1}}},{{{7}}})


table

{{{x}}}|{{{f(x)}}}

{{{0}}}|{{{0}}}

{{{6}}}|{{{0}}}

{{{1}}}|{{{-5}}}

{{{-1}}}|{{{7}}}

plot these points and draw a graph of a parabola


for {{{g(x) = ( x+4)}}} root is

if {{{ ( x+4)=0}}}, then {{{x=-4}}}

this is linear function and we will need only two points to graph a strait line


{{{x}}}|{{{f(x)}}}

{{{0}}}|{{{4}}}

{{{-4}}}|{{{0}}}



{{{ graph( 600, 600, -10, 20, -10, 20, x^2-6x, x+4) }}}