Question 668046
If you want to factor, then




Looking at the expression {{{80a^2-26a-15}}}, we can see that the first coefficient is {{{80}}}, the second coefficient is {{{-26}}}, and the last term is {{{-15}}}.



Now multiply the first coefficient {{{80}}} by the last term {{{-15}}} to get {{{(80)(-15)=-1200}}}.



Now the question is: what two whole numbers multiply to {{{-1200}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-26}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-1200}}} (the previous product).



Factors of {{{-1200}}}:

1,2,3,4,5,6,8,10,12,15,16,20,24,25,30,40,48,50,60,75,80,100,120,150,200,240,300,400,600,1200

-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-16,-20,-24,-25,-30,-40,-48,-50,-60,-75,-80,-100,-120,-150,-200,-240,-300,-400,-600,-1200



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-1200}}}.

1*(-1200) = -1200
2*(-600) = -1200
3*(-400) = -1200
4*(-300) = -1200
5*(-240) = -1200
6*(-200) = -1200
8*(-150) = -1200
10*(-120) = -1200
12*(-100) = -1200
15*(-80) = -1200
16*(-75) = -1200
20*(-60) = -1200
24*(-50) = -1200
25*(-48) = -1200
30*(-40) = -1200
(-1)*(1200) = -1200
(-2)*(600) = -1200
(-3)*(400) = -1200
(-4)*(300) = -1200
(-5)*(240) = -1200
(-6)*(200) = -1200
(-8)*(150) = -1200
(-10)*(120) = -1200
(-12)*(100) = -1200
(-15)*(80) = -1200
(-16)*(75) = -1200
(-20)*(60) = -1200
(-24)*(50) = -1200
(-25)*(48) = -1200
(-30)*(40) = -1200


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-26}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-1200</font></td><td  align="center"><font color=black>1+(-1200)=-1199</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-600</font></td><td  align="center"><font color=black>2+(-600)=-598</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-400</font></td><td  align="center"><font color=black>3+(-400)=-397</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-300</font></td><td  align="center"><font color=black>4+(-300)=-296</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-240</font></td><td  align="center"><font color=black>5+(-240)=-235</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-200</font></td><td  align="center"><font color=black>6+(-200)=-194</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-150</font></td><td  align="center"><font color=black>8+(-150)=-142</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-120</font></td><td  align="center"><font color=black>10+(-120)=-110</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-100</font></td><td  align="center"><font color=black>12+(-100)=-88</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-80</font></td><td  align="center"><font color=black>15+(-80)=-65</font></td></tr><tr><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>-75</font></td><td  align="center"><font color=black>16+(-75)=-59</font></td></tr><tr><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>20+(-60)=-40</font></td></tr><tr><td  align="center"><font color=red>24</font></td><td  align="center"><font color=red>-50</font></td><td  align="center"><font color=red>24+(-50)=-26</font></td></tr><tr><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>-48</font></td><td  align="center"><font color=black>25+(-48)=-23</font></td></tr><tr><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>30+(-40)=-10</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>1200</font></td><td  align="center"><font color=black>-1+1200=1199</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>600</font></td><td  align="center"><font color=black>-2+600=598</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>400</font></td><td  align="center"><font color=black>-3+400=397</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>300</font></td><td  align="center"><font color=black>-4+300=296</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>240</font></td><td  align="center"><font color=black>-5+240=235</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>200</font></td><td  align="center"><font color=black>-6+200=194</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>150</font></td><td  align="center"><font color=black>-8+150=142</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>120</font></td><td  align="center"><font color=black>-10+120=110</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>100</font></td><td  align="center"><font color=black>-12+100=88</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>80</font></td><td  align="center"><font color=black>-15+80=65</font></td></tr><tr><td  align="center"><font color=black>-16</font></td><td  align="center"><font color=black>75</font></td><td  align="center"><font color=black>-16+75=59</font></td></tr><tr><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-20+60=40</font></td></tr><tr><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>-24+50=26</font></td></tr><tr><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>48</font></td><td  align="center"><font color=black>-25+48=23</font></td></tr><tr><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-30+40=10</font></td></tr></table>



From the table, we can see that the two numbers {{{24}}} and {{{-50}}} add to {{{-26}}} (the middle coefficient).



So the two numbers {{{24}}} and {{{-50}}} both multiply to {{{-1200}}} <font size=4><b>and</b></font> add to {{{-26}}}



Now replace the middle term {{{-26a}}} with {{{24a-50a}}}. Remember, {{{24}}} and {{{-50}}} add to {{{-26}}}. So this shows us that {{{24a-50a=-26a}}}.



{{{80a^2+highlight(24a-50a)-15}}} Replace the second term {{{-26a}}} with {{{24a-50a}}}.



{{{(80a^2+24a)+(-50a-15)}}} Group the terms into two pairs.



{{{8a(10a+3)+(-50a-15)}}} Factor out the GCF {{{8a}}} from the first group.



{{{8a(10a+3)-5(10a+3)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(8a-5)(10a+3)}}} Combine like terms. Or factor out the common term {{{10a+3}}}



===============================================================



Answer:



So {{{80a^2-26a-15}}} factors to {{{(8a-5)(10a+3)}}}.



In other words, {{{80a^2-26a-15=(8a-5)(10a+3)}}}.



Note: you can check the answer by expanding {{{(8a-5)(10a+3)}}} to get {{{80a^2-26a-15}}} or by graphing the original expression and the answer (the two graphs should be identical).