Question 663778


{{{2x^3+4x^2+8x}}} Start with the given expression.



{{{2x(x^2+2x+4)}}} Factor out the GCF {{{2x}}}.



Now let's try to factor the inner expression {{{x^2+2x+4}}}



---------------------------------------------------------------



Looking at the expression {{{x^2+2x+4}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{2}}}, and the last term is {{{4}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{4}}} to get {{{(1)(4)=4}}}.



Now the question is: what two whole numbers multiply to {{{4}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{4}}} (the previous product).



Factors of {{{4}}}:

1,2,4

-1,-2,-4



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{4}}}.

1*4 = 4
2*2 = 4
(-1)*(-4) = 4
(-2)*(-2) = 4


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>1+4=5</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>2+2=4</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-1+(-4)=-5</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-2+(-2)=-4</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{2}}}. So {{{x^2+2x+4}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{2x^3+4x^2+8x}}} simply factors to {{{2x(x^2+2x+4)}}}



In other words, {{{2x^3+4x^2+8x=2x(x^2+2x+4)}}}.