Question 662973

{{{y[1]=x-3/5}}}, .........1

{{{y[2]=x-5/4}}} ...........2

{{{y[1]-y[2]=1}}} .........3
______________________________

{{{y[1]-y[2]=(x-3/5)-(x-5/4)}}}.....since {{{y[1]-y[2]=1}}}, we will have

{{{1=(x-3/5)-(x-5/4)}}}..

{{{1=x-3/5-x+5/4}}}

{{{1=x-3/5-x+5/4}}}

{{{1=-3/5+5/4}}}

{{{1=(-3*4+5*5)/(5*4)}}}

{{{1=(-12+25)/20}}}

{{{1=13/20}}} .....NO SOLUTION

These are parallel lines.

Both have a slope of {{{1}}}.

One has a {{{y-intercept}}} of {{{-3/5}}}, the other has a {{{y-intercept}}} of {{{-5/4}}}.

so, there is NO {{{x}}} value such that {{{y[1] - y[2] = 1}}}


{{{ graph( 600, 600, -10, 10, -10, 10, x-3/5, x-5/4) }}}