Question 660487


First let's find the slope of the line through the points *[Tex \LARGE \left(3,4\right)] and *[Tex \LARGE \left(5,8\right)]



Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(3,4\right)]. So this means that {{{x[1]=3}}} and {{{y[1]=4}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(5,8\right)].  So this means that {{{x[2]=5}}} and {{{y[2]=8}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(8-4)/(5-3)}}} Plug in {{{y[2]=8}}}, {{{y[1]=4}}}, {{{x[2]=5}}}, and {{{x[1]=3}}}



{{{m=(4)/(5-3)}}} Subtract {{{4}}} from {{{8}}} to get {{{4}}}



{{{m=(4)/(2)}}} Subtract {{{3}}} from {{{5}}} to get {{{2}}}



{{{m=2}}} Reduce



So the slope of the line that goes through the points *[Tex \LARGE \left(3,4\right)] and *[Tex \LARGE \left(5,8\right)] is {{{m=2}}}



Now let's use the point slope formula:



{{{y-y[1]=m(x-x[1])}}} Start with the point slope formula



{{{y-4=2(x-3)}}} Plug in {{{m=2}}}, {{{x[1]=3}}}, and {{{y[1]=4}}}



{{{y-4=2x+2(-3)}}} Distribute



{{{y-4=2x-6}}} Multiply



{{{y=2x-6+4}}} Add 4 to both sides. 



{{{y=2x-2}}} Combine like terms. 



So the equation that goes through the points *[Tex \LARGE \left(3,4\right)] and *[Tex \LARGE \left(5,8\right)] is {{{y=2x-2}}}


<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>