Question 7346
{{{(r+5) / (r^2 + 5r - 14)}}} / {{{(r^2 + 4r - 21) /( r - 2)}}}


{{{(r+5) / (r+7)(r-2)}}} / {{{(r+7)(r-3)/( r - 2)}}}


multiply it with the reciprocal of {{{(r+7)(r-3)/( r - 2)}}} which is {{{(r-2)/(r+7)(r-3)}}}

({{{(r+5) / (r+7)(r-2)}}})({{{(r-2)/(r+7)(r-3)}}})
{{{(r+5)/(r+7)(r+7)(r-3)}}}

={{{(r+5)/(r^2+14r+49)(r-3)}}}
={{{(r+5)/(r^3+14r^2+49r-3r^2-42r-147)}}}
={{{(r+5)/(r^3+11r^2+7r-147)}}}