Question 658524
  <pre><font face = "Tohoma" size = 3 color = "indigo"><b> 
Hi,Re TY, good news is that You will not be expected to do this "long-hand"
that's why there are charts, Excel functions, calculators like the TI83, etc
to find either the z-value given the P-value or the P-value given the z-value

for ex: using Excel function:  NORMSINV(.9625) = 1.7805 
and P(-2.00 <_ z <_ +2.00)= NORMSDIST(2)-NORMSDIST(-2) = .9544

Important to Understand z -values as they relate to the Standard Normal curve:
Below:  z = 0, z = ± 1, z= ±2 , z= ±3 are plotted.  
Note: z = 0 , 50% of the area under the curve is to the left and 50%  to the right
{{{drawing(400,200,-5,5,-.5,1.5, graph(400,200,-5,5,-.5,1.5, exp(-x^2/2)), green(line(1,0,1,exp(-1^2/2)),line(-1,0,-1,exp(-1^2/2))),green(line(2,0,2,exp(-2^2/2)),line(-2,0,-2,exp(-2^2/2))),green(line(3,0,3,exp(-3^2/2)),line(-3,0,-3,exp(-3^2/2))),green(line( 0,0, 0,exp(0^2/2))),locate(4.8,-.01,z),locate(4.8,.2,z))}}}

This particular 'chart' below shows the amount of area under the Normal distribution curve between z = 0 and the z given 
(half the total area to the left of the z-value)
that is to say one would add .50 to each entry for total area under the curve to the left of the z value.
Highlighted + .50 is .9625 and P(z<+a)=0.9625, a = 1.78  (the 8 coming from the .08 column)
As to P(-2.00 <_ z <_ +2.00) = .4772 + .4772 = .9544
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	{{{highlight(0.4625)}}}	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	{{{highlight(0.4772)}}}	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817