Question 654518
{{{ e^x}}} = {{{2*e^(1-2x) }}}
<pre>
Divide both sides by {{{e^(1-2x)}}}

{{{ e^x/e^(1-2x)}}} = {{{2*e^(1-2x)/e^(1-2x) }}}

Subtract exponents of e on the left, cancel on the right:

{{{ e^(x-(1-2x))}}} = {{{2*cross(e^(1-2x))/cross(e^(1-2x)) }}}

{{{ e^(x-1+2x)}}} = 2

{{{ e^(3x-1)}}} = 2

Use the principle that equation {{{e^A = B}}} is equivalent to the
equation A = ln(B) to rewrite the above as

3x - 1 = ln(2)

    3x = 1 + ln(2)

     x = {{{(1+ln(2))/3}}}

     x &#8776; 0.5643823935

Edwin</pre>