Question 648273


{{{12x^3-27x^2-27x}}} Start with the given expression.



{{{3x(4x^2-9x-9)}}} Factor out the GCF {{{3x}}}.



Now let's try to factor the inner expression {{{4x^2-9x-9}}}



---------------------------------------------------------------



Looking at the expression {{{4x^2-9x-9}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-9}}}, and the last term is {{{-9}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{-9}}} to get {{{(4)(-9)=-36}}}.



Now the question is: what two whole numbers multiply to {{{-36}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-9}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-36}}} (the previous product).



Factors of {{{-36}}}:

1,2,3,4,6,9,12,18,36

-1,-2,-3,-4,-6,-9,-12,-18,-36



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-36}}}.

1*(-36) = -36
2*(-18) = -36
3*(-12) = -36
4*(-9) = -36
6*(-6) = -36
(-1)*(36) = -36
(-2)*(18) = -36
(-3)*(12) = -36
(-4)*(9) = -36
(-6)*(6) = -36


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-9}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>1+(-36)=-35</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>2+(-18)=-16</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-12</font></td><td  align="center"><font color=red>3+(-12)=-9</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>4+(-9)=-5</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>6+(-6)=0</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>-1+36=35</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-2+18=16</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-3+12=9</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-4+9=5</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-6+6=0</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-12}}} add to {{{-9}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-12}}} both multiply to {{{-36}}} <font size=4><b>and</b></font> add to {{{-9}}}



Now replace the middle term {{{-9x}}} with {{{3x-12x}}}. Remember, {{{3}}} and {{{-12}}} add to {{{-9}}}. So this shows us that {{{3x-12x=-9x}}}.



{{{4x^2+highlight(3x-12x)-9}}} Replace the second term {{{-9x}}} with {{{3x-12x}}}.



{{{(4x^2+3x)+(-12x-9)}}} Group the terms into two pairs.



{{{x(4x+3)+(-12x-9)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(4x+3)-3(4x+3)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-3)(4x+3)}}} Combine like terms. Or factor out the common term {{{4x+3}}}



--------------------------------------------------



So {{{3x(4x^2-9x-9)}}} then factors further to {{{3x(x-3)(4x+3)}}}



===============================================================



Answer:



So {{{12x^3-27x^2-27x}}} completely factors to {{{3x(x-3)(4x+3)}}}.



In other words, {{{12x^3-27x^2-27x=3x(x-3)(4x+3)}}}.



Note: you can check the answer by expanding {{{3x(x-3)(4x+3)}}} to get {{{12x^3-27x^2-27x}}} or by graphing the original expression and the answer (the two graphs should be identical).


<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>