Question 59245
Please find derivative and simplify:
d/dx[ln(x)]=1/x
d/dx[cf(x)]=cf'(x)
d/dx[c]=0
Chain Rule: d/dx[f(g(x))]=f'(g(x))*g'(x)
:
y=ln((3x-5)^3/(5x+4)^4)  Use properties of logs to simplify first.
y=ln((3x-5)^3)-ln((5x+4)^4)
y=3ln(3x-5)-4ln(5x+4)  Now take the derivative using the chain rule:
{{{dy/dx=3(1/(3x-5))(3)-4(1/(5x+4))(5)}}}
{{{highlight(dy/dx=9/(3x-5)-20/(5x+4))}}}
Happy Calculating!!!